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A. Near-Maximal-Length Cycles With Linear
Feedback Shift Registers, M. Periman

1. Introduction

The behavior of synchronously operated shift registers
with lirear logic feedback has been studied in detail
(e.g., Ref. 1). An r-stage linear feedback shift register
(FSR) can be used to realize cycle lengths of 27— 1, which
are termed maximal. The simplest of these, in terms of
the complexity of the feedback logic, are those with two-
tap feedback which satisfy the linear recurrence rela-
tionship

An = Qp-i @ QAp-y (1)

The subscript n in Eq. (1) refers to the clock pulse time.
The bit being fed back at time n is a,, the modulo 2 sum
(i.e., EXCLUSIVE-OR) of the contents of the ith and rth
stages at time n. The initial state of the ith stage is a_,
where n = 0.

Unfortunately, there are many values of r for which
maximal-length cycles cannot be realized with two feed-

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

N&7 29157

back taps (see Ref. 2). In these cases, four or a higher
even number of taps are required. As the number of
feedback taps increases, the complexity of the feedback
function grows sharply. The question then arises: Are
near-maximal-length cycles realizable with linear FSRs
having feedback functions less complicated than a four-
input modulo 2 summer? It will be shown that cycle
lengths of 2°—2 and 2*—4 can be realized with s-stage
linear FSRs. The feedback functions are (with few ex-
ceptions) effectively a three-input modulo 2 summer.

2. Generalized r-Stage FSR With Linear Feedback

In Fig. 1, the stages of the register are designated (left
to right) S,, S,, - -, S,. The output of stage S; is connected
to the input of the modulo 2 summer when C,.; = 1.
C, is always 1, otherwise fewer than r stages would be in
use. The external input e is a Boolean constant.

Let x; represent the present state and X; the next state
cf stage S;. The next state of each stage may be cxpressed
as a linear Boolean function of the present state of one or
more stages.
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X, =Cx,P0Cox.®@-- BC,x, , Dx,Pe
X, - X,
X, = X,

X;: Xr

This may be expressed as

X:V TCL Gy s - o1 0] Tx] e
X. 1 0o - --C1 X,
= S
X, | [0 o 0 0l |x | o_!
(3)
or
X=TxDL (4)

Rules of modulo 2 arithmetic are used in determining X.
The r X r Boolean matrix T is nonsingular since its row
(column) vectors are linearly independent (Ref. 3). It is
termed an associated matrix. T represents the linear
transformation of an r component vector (present state
of the register) into another r component vector (next
state of the register). L represents a translation. When
nonzero (i.e., e = 1), the modulo 2 sum of the column
vector L and Tx represents the complementation of the
bit being fed back. A linear transformation T followed
by a translation is called an affine transformation (Ref. 3).
Every translation is one-to-one and has an inverse, and
the linear transformation T is one-to-one and has an
inverse. Hence, the affine transformation Tx @ L is one-
to-one and has an inverse. This is another way of saying
that each state has a unique predecessor (or equivalently,
distinct states have distinct successors).

Of primary interest are the feedback combinations that
yield the longest possible cycle length.

CASE I

Therefore,

and
X =Tx

This case has been thoroughly analyzed (see Refs. 1
and 4) and is summarized here, The smallest value of k
for which T* = I is the length of the longest possible
cycle,

The divisibility properties of ¢(a), the characteristic
polynomial of T, and k are related as follows:

The smallest value of k for which
¢(A) [AF — 1 (5)

is the length of the longest cycle which always contains
the state 00 --- 01. In general,

$(A) = [T=AI| = A +Coqd™ + - + Ca+ 1
(6)

For simplicity, + is used to represent modulo 2 addition.
Also, —1 appears as +1 since —~1 = 1 mod 2. In accord-
ance with the Caley~-Hamilton theorem (Ref. 3),

ST) =T —1=0
and
T =1

Thus, if ¢(A) divides A* — 1 [i.e., ¢(A) is a factor of A* — 1],
T satisfies A* — 1 and T* = I. The polynomial of the low-
est degree which is satisfied by a square matrix A is the
minimal polynomial m(r) of A, and it is unique. Fortu-
nately, as will be shown, ¢(A) = m(A) for the associated
matrix T.

When ¢(A) is irreducible, the smallest k for which
(5) holds is termed the exponent to which ¢(A) belongs.
To obtain the longest possible cycle length of an r-stage
FSR, one must find an irreducible ¢(A) of degree r which
belongs to a maximum exponent. The maximum cycle
length is

k=9 —1
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The exponent ot an irreducible polynomial of degree r
which is not maximum divides 2" — 1. For every positive
integer r, there are [@(2" — 1)]/r polynomials of degree r
that belong to a maximum exponent of 2° — 1. The Euler
phi-function @(n) is the number of positive integers no
greater than the integer n that are relatively prime to n.

Irreducibility is a necessary, but not sufficient, condi-
tion for ¢(A) to belong to a maximum exponent. A ¢(r) of
degree r that belongs to a maximum exponent character-
izes an r-stage maximal length FSR.

Cycle lengths for irreducible polynomials through de-
gree 19 are given in Ref. 5. Irreducible polynomials of
degree r > 1 will always have an odd number of terms,
otherwise ¢(A) will contain A + 1 as a factor. Irreducible
trinomials of maximum exponent characterize maximal
length FSRs with the simplest feedback logic; namely,
a two-input modulo 2 summer. As previously stated,
trinomials are not always among the [@(2" — 1)]/r irre-
ducible polynomials of maximum exponent. A conjecture,’
which has since been proven true, states that every tri-
nomial of degree 8 m (m = 1,2, --*) is reducible. This is
a sufficient, but not necessary, condition for a trinomial
0 be reducible.

For repeated irreducible factors such as ¢(A) -[g(a)]*,
k¢ = e(")kﬂ

where e(v) = 2! and i is an integer such that 1 < (2i/v) < 2.

Tabulated below are values of e(v) for v from 1 through 10.

v e(v) v e(v)
1 1 6 8
2 2 7 8
3 4 8 8
4 4 9 16
5 8 10 18
i
In general, for
¢(x) = [&(A)]™ [ga(A)]*s --- [gm(A)]*=

'Made by S. W. Golomb, formerly of JPL Section 331.
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where g,(A), g:(A), *, gn(A) are irreducible,

k¢ = LCAI [e("l) kﬂp e(V'J) kﬂ-_p T e(ym) kﬂm]

where LCM denotes the least common multiple.

CASE II:
e=1
Then
-1
0
L=
U
and
X=Tx®L

The transformation T and the translation L may be
combined by bordering T with L to the right as a col-
umn, below with r zeros, and below and to the right by
a single entry one (Ref. 3). The matrix equation (Eq. 3)
can thus be written as

r-xl- PCT—I C,.. C: E 1- [~ X N
X, 1 0 ---0 0':0 x;
= ! ™M
X
X, EO X,
..1.. L 51_4 _IJ

The present state x is bordered with a one to make it
conformal with the hordered T matrix and to perform
the necessary complementation (i.e., translation) in the
feedback to S, in Fig. 1. The next state vector X is also
bordered just as x. The one in the last row appears for
each successive transformation. The matrix

[T L
A"[o 1] @
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Fig. 1. Generalized r-stage FSR with linear feedback

is of the order r + 1 by r + 1 and includes the transla-
tion L. The characteristic polynomial of A is

T Al L

A T

(9)

6(A) = (a + 1) ¢(a) (10)

where ¢( +) is the characteristic polynomial of T. Just as T,
A is nonsingular for all combinations of values of C, ,
where 1 < i< r and C, = 1. It will be shown that 6(x)
is minimal for A, just as ¢(A) = m(A) for T. Note that
the A + 1 in Eq. (10) accounts for the complementation
of the bit being fed back. The degree of ¢(A) determines
the number of stages required. When the feedback of
an FSR characterized by ¢(A) is complemented, it will be
designated by #(A)* where ¢(A)* = [6(A)]/(A + 1).

3. The Minimal Polynomial of the T and A Matrices

Every square matrix satisfies a unique polynomial,
called the minimal polynomial. The minimal polynomial
m(A) of a square matrix B is the polynomial of lowes:
degree for which m(B) = 0. Furthermore, m(A) divides
every polynomial which is satisfied by B (Ref. 3). There-
fore, m(A)|¢(A) where #(A) is the characteristic poly-
nomial of B.

The length of the longest cycle of an FSR with linear
logic feedback is related to the divisibility properties
of m(A). Only when ¢(x) = m(A), can ¢(r) be used to
determine the length of all cycles (Ref. 1). To justify the
use of ¢(A) or &(A) in determining the longest cycle length
of FSRs associated with the T and A matrices, it must be
shown that their characteristic and minimal polynomials
are equal,

212

For any n X n matrix B, there cxist elementary poly-
nomial matrices P(A) and Q(A). such that

F_(Iy{/\) 0 ot 0 ]
0 din) - - - 0
[PV [B—-AI[Q(A)] -
0 0 - - d |
(11)
where d,(A), d.(A), ..., d,(A) are monic polynomials (see

Ref. 6). The matrix [B—AI] satisfies (i.e., is a root of)
D(A) = di(A) da(A), - .., dy(A) (12)

in which d,(A)|d...(A) for i = 1, ..., n~1. The diagonal
matrix (Eq. 11) is the Smith canonical form of B and
d,(A) for all i is a similarity invariant of B. The minimal
polynomial of B is d,(A). The characteristic polynomial
of B is D(A). When D(A) = d,(A), B is said to be non-
derogatory.

The Smith canonical form can be derived from [B— Al
without explicitly determining P(A) and ¢(A). The Smith
canonical form is derived as follows for the T and A
matrices.

a. The T matrix. Given the 4 X4 [T —al] matrix,

A+C, €. € 1
1 A 0 O
0 1 A 0
0 0 1 a]

{13)

Let the elementary transformations induced by P(A) or
Q(A) be denoted as follows:

Ci, is the interchange of columns i and §

Cij(k) is the replacement of column i by column f plus
k times column j

113, 15(k) are corresponding row operations
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Note that all arithmetic operations are reduced modulo 2.
The sequence of elementary operations

(1) C.,(A) \

(2) r.A4C)

(3) Cu(a)

(4) 1At FC A4 C))

(5) CiiA) (14)
6) r.,(A CAr+Ca4 CY)
)
)
)

(
(7
8

9

-~

ﬁ

2

Ty )

reduces (13) to the Smith form

0
0 (15)
0

S = O D

0
1
0
0

o o o =

(A)

where D(A) = ¢(A) =m(A) = A + CA* - CA*+Cia+t L

This procedure is readily extended to any r X r T matrix
as shown in Eq. (3) of Section 2

b. The A matrix. Given the 5 X 5 [A—AI] matrix,

FA+C, C. C, 1 1
1 A 0 0 0
0 1 A 0 0 (16)
0 o0 1 A 0

L 0 0 0 0 A+l

The sequence of elementary transformations from 1
through 6 as shown in (14) results in

0 0 0 o(r) 1
1 0 0 o0 O
6 1 0 o0 O o))
0 0 1 o0 O
0 0 0 0 A+l
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and continving with

(7) C.[¢(M)]
(8) ro\(A-t 1N
(9)
(10)
)
)

i

o 0

o

(11
(12

(!

4
]
’
P
:

9]

reduces the matrix of (17) to

D D = O
- D O O

[ R e e N =
o0 = D D

4. Feedback Configuration for Near-Maximal
Linear FSRs

a. Derivatic:. of c characteristic polynomial for a cycle
length of 2—2. Given the characteristic polynomial g(A)
of degree r associated with a maximal-length r-stage linear
FSR, then

A(A) = (A +1)*g(a)

is the characteristic polynomial of an (r+2)-stage linear
FSR with a major cycle length of

2(2 1) or 271 —2
Since complementation of the feedback has the effect of
introducing a factor of A+1 in the characteristic poly-
nomial, a cycle length of 2*'—2 can be realized with an
(r+1)-stage FSR, where
#(A)* = (A+1)g)

For many values of r, a g{A) of degree r can be found
such that ¢(A)* is a tetranomial.

EXAMPLE 1:

gA)= A+ A+ A HN A HA+]
A =(a+tl)g)=A+aT+ A +1 (18)

21




or

a, — 1Da, Da, . Da, .

(19)
d, — da, l@”n o @a’

no~

The characteristic polynomial (Eq. 18), or equivalently,
the linear recurrence relationship (Eq. 19), characterizes
a major cycle length of 254 (and a minor cycle length of 2)
of an eight-stage linear FSR.

The binary coefficients (1011111 1in Example 1)
may be determined from Ref. 5 for every maximal-length
feedback configuration. When a g(a) is selected such that

the binary sequence of coefficients starts and ends with a
run of ones separatcd by a run of zeros,

(A)* (A F1)g(A)
results in a tetranomial.
In Example 1, (A 4 1) g(A) can be determined from
#(a) + ag(a)
as follows:

10111111 Ag(2)
10111111 g(n)
T11000001 T

Table 1. Linear feedback configurations for FSR cycle
lengths of 2 —2 and 2

s i i 2’-2
4 ] 2 14
5 1 3 30
é 1 2 62
7 1 S 126
8 1 2 254
9 2 6 510
10 2 3 1022
11 1 3 2046
12 2 7 4094
13 - - -—
14 1 2 16328
15 3 5 32766
16 1 2 65534
17 1 n 131070
18 1 12 262142
19 1 7 524296
20 1 4 1048574

24

As shown in Table 1, there is an s-stage linear three-tap
FSR with a major cycle length of 2* —2 for every value of s
from 4 through 20. The only exception is for an s of 13.

Where possible, it is desirable to have the stage storing
a, , connected to the feedback. This allows a simplifica-
tion in the implementation of the feedback when using
RS flip-flops as memory clements. If the leading run of
ones in the binary coeificient of g(A) contains a single one
as in Example 1, the feedback function for (A+1) g(a)
will be

a, ba, , Da,

Each feedback configuration tabulated in Table 1 has a
minor cycle of length Z. The states of the minor cycles
are:

S even S odd
0101 - - -01 0101.---010
1010 --10 1010---101

b. Derivation of a characteristic polynomial for a cycle
length of 2" — 4. The characteristic polynomial

() = (A+1)" g(a)

where g(A) is of degree r and maximal is the character-
istic polynomial of an (r+3)-stage linear FSR with a
major cycle length of

4(2 —1or2: —4

A major cycle length of 2"*? — 4 can be realized with an
(r + 2)-stage linear FSR. By complementing the feed-
back, a factor of A + 1 is introduced. Thus,

d(A)* =@+ 1) g(r) = (a* + 1) g(r)

characterizes a linear FSR with a major cycle length of
22 — 4 and a minor cycle length of 4.

EXAMPLE $:
EAN=AFAF A A+ A+ A+
A=A +Dgh)=ac+2+2+1 (20
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or

a, = 1ba,, Da,.Pa,

2D
a, = a, Da, . Dd’,
The characteristic polynomial (Eq. 20), or equivalently,
the linear recurrence relationship (Eq. 21), characterizes
a major cycle length of 1020 (and a minor cycle length
of 4) of 10-stage lincar FSR.

When a g(A) is selected such that the binary sequence
of coefficients either starts with a run of ones and ends
with alternating zeros and ones (ie, 1101 - - -0 1),
or starts and ends with alternatiing subsequences sep-
arated by a run of zeros or ones, ¢(A)* = (A + 1)* g(A)
results in a tetranomial. A g(A) of the first form yields a
fecdback configuration in which a, , is fed back.

In Example 2, (A* + 1) g(A) can be determined from
2(A) + At g(A) as follows:

111110101 A g(A)
111110101 g(A)
11000100001 (A + 1) g(A)

Linear s-stage FSRs with a three-tap feedback configu-
ration and a major cycle length of 2* — 4 are tabulated
in Table 2. Values of s from 4 through 21 are included,

Table 2. Linear feedback configurations for FSR cycle
lengths of 2°—4 and 4

s i i 2’2
4 1 3 12
5 1 2 28
6 - - P
7 1 4 124
s - - —_
9 1 2 508

10 1 5 1920

" 1 4 2044

12 1 3 4092

13 1 2 (3] 1)

14 - - -—

15 1 12 32764

16 1 7 65532

17 ! 14 131068

18 L] 9 262140

9 7 10 524204

20 s 7 1048572

N 1 é 2097148
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with the exception of 6, 8, and 14 which do not exist with
three feedback taps (i.e., which can be characterized with
tetranomials),

Each feedback configuration tabulated in Tabie 2 has
a minor cycle of length 4. The states of the minor cycle
are:

00110011 - L0011 - - .
10011001 --..-1001 -
11001100 - ---1100 - -
01100110 --..0110. ..

c. Implementation of near-maximal linear FSRs. As
shown in Tables 1 and 2, a near-maximal cycle length
can be realized with a feedback function of the form

a,.,®a,,Da’,
for values of s from 4 through 21.

Substituting q; for a,..,, the next state of the leftmost
memory element may be expressed as

0, =q9q,9q, (22)
Given RS flip-flops with the characteristic equation
Q=95 +Rq
where
RS =0

the minimized R, and S, inputs for the flip-flops whose
next state is Q, are:

n i=1
Ri=(9:9;4, + 9:9,q)
5,.=(9, 9,49, +4,9,9.)

2) il
R=6¢,4,9.+4i79. +qq;q, + q, 4} q,
S,=R

Thus, the cost of the feedback nstwork is four NAND
gates when { = 1 and five NAND gates when { » 1.

- e e - et

LA




Provision for common collector operation (i.e., NAND-
AND) is assumed.

When a maximal-length cycle of 27 - 1 cannot be real-
ized with r stages, a near-maximal length of 20 2 or
27 - 4 may be realized with 7 stages and as few as four
NAND gates which comprise the feedback network.
(Two-tap feedbock networks for maximal-length lincar

FSRs requite two NAND gates when ¢, is fed back, or
three NAND gates otherwise.)

For example, there is no 12-stage, two-tap feedback
configuration that yields a maximal length of 4095 (see
Ref. 2). However, the near-maximal length of 4092 can
be realized with 12 memory elements and four NAND
gates (see Table 2).
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